

Vulkan, OpenGL and/or Zerocopy
Matthew Waters (ystreet00)
GStreamer conference 2016

10 October 2016

Who Am I

● Australian
● Work - Centricular
● Graphics – OpenGL, Vulkan
● Multimedia

Quick Introduction – OpenGL

● OpenGL born from SGI in 1990's
● Cross-platform 3D API

– X11, wayland, OS X, iOS, Android, Windows,
Embedded Linux

Quick Introduction – GStreamer OpenGL/ES

● Minimum target OpenGL ES 2.0
– Essentially the beginning of GLSL support

● Versions supported – OpenGL ES 2.0/3.x Desktop
2.x/3.x/4.x

● Platforms supported – Linux (X11 + Wayland), OS X,
Windows, iOS, Android, Embedded Linux

● Various elements available – glimagesink, glcolorconvert,
glvideomixer, gltransformation, gloverlay, gleffects_*, etc

What's New? - libgstgl

● glviewconvert now supported on OpenGL ES 2.0 platforms
(stereo elements as well)

● glcolorconvert now allows converting to multi-planar
colorspaces in OpenGL ES 3.x

● gldownload API removed from the library
● dma-buf GL uploader
● GL queries
● Delayed GStreamer debugging

What's New? – libgstgl GL memory

● New GL buffer based GstMemory
● GstGLMemoryPBO – GL textures with Pixel Buffer Objects
● GstGLMemoryEGL – GL textures with EGLImage’s
● New GL renderbuffer based GstMemory
● GstGLFramebuffer

Quick Introduction – Vulkan

● Vulkan released February 2016
● Cross-platform 3D API

– X11, wayland, Android, Windows, Embedded Linux
● Aims to be a better fit for modern GPUs
● More control over synchronization

Vulkan in GStreamer

● vulkansink and vulkanupload elements
● Only basics implemented

– Modelled on libgstgl API
● Much more work needed to be on par with OpenGL

support

Vulkan in GStreamer

● Somewhat similar infrastructure to libgstgl
– GstContext
– Display
– Window
– Instance
– Device

● Some things are very different
– Synchronization – semaphores, events, fences
– More application state

Zerocopy - Introduction

● Definition ranges from:
– No copies at all
– No CPU performed copies

● Most common between decoder and renderer (but also
occur between capturer/encoder)

Zerocopy – Where?

● VA-API
● OpenMAX IL
● Android’s MediaCodec
● iOS/macOS VideoToolbox
● VDPAU
● XvMC/XvBA
● DXVA

Zerocopy – How?

● Bind
– VM MMU
– Synchronization

● Use
● Unbind

– Synchronization

Zerocopy – dma-buf

● Used by v4l2, (VA-API on EGL)
● dma-buf is converted to an EGLImage
● EGLImage is bound to a GL texture with

glEGLImageTargetTexture2D()

Zerocopy – Android MediaCodec

● Hold the consumer end of a queue
● Can only pop off the end of the queue but don’t have

unique frame handles
● Synchronization is all internal
● Can only bind to one GL context at a time

Zerocopy – OpenMAX IL

● Uses EGLImage’s
● RPi has a separate omx component – egl_render
● EGLImage backed by a GL texture passed into OMX
● Custom GstGLMemory

Zerocopy – VideoToolbox - macOS

● Uses IOSurface
● CGLTexImageIOSurface2D()
● Custom GstGLMemory subclass

Zerocopy – VideoToolbox - iOS

● IOSurface is available but not public
● Uses CVOpenGLESTextureCache instead

– CVOpenGLESTextureCacheCreateTextureFromImage()
● Custom GstGLMemory subclass

Zerocopy – gstreamer-vaapi

● GstVideoGLTextureUploadMeta
– X11 uses GL_EXT_texture_from_pixmap
– Wayland/EGL uses dma-buf

What's Happening?

● OpenGL helper library – move to gst-plugins-base
● OpenGL model viewer – still :-)

Thanks!

ystreet00 in #gstreamer on freenode

